📃
Confidential Computing 101
HomeTechnologyTry CC!
  • Welcome
  • Confidential Computing
    • What is Confidential Computing
    • What problems Confidential Computing solves
      • Bare Metal
      • Docker
      • Kubernetes
      • Knative
    • Why Confidential Computing
    • How Confidential Computing works
      • Memory Encryption
      • Workload Attestation
      • Confidential Boot
      • Sealing / Binding
      • Secret Provisioning
    • Technology Overview
    • Cloud Service Providers
  • Technology in depth
    • Intel SGX
      • Getting Started
        • Bare Metal Server Installation
        • Enclave Development Environment
        • Intel SGX SDK Setup
      • Technology
        • 🎭Features
        • 💂Threat Model
        • 🆚Versions
        • 🟦Concepts
          • 🏦Memory Encryption
          • 👮Local and Remote Attestation
          • 🖼️DCAP-Attestation Framework
          • 🔑Secret Key Provisioning
      • enclaive Development Kit
        • 🏢Architecture
        • 🌪️Workflow
        • 🌍Tutorials
          • Azure DCdsv3, DCsv2, or DCsv3 Setup
          • Redis in cK8s
          • MongoDB in cK8s
          • K8s + HashiCorp Vault on Azure DCsv3
      • Vault Remote Attestation Plug-In
        • 🏃‍♂️Initialization
        • 👮Attestation
        • ⚙️Configuration
    • Intel TDX
      • Getting Started
        • Azure
        • AWS
        • GCP
      • Technology
        • History
          • VT
          • TME/MKTME
          • SGX
        • Features
        • Threat Model
        • Concepts
          • Architecture
            • TDX Module
          • Memory Encryption
            • Confidentiality and Integrity
            • Keys and Key Management
          • TD Partitioning
          • DCAP-Attestation
            • Overview
            • Platform Registration
            • Attestation Report
    • AMD SEV
      • Getting Started
        • Azure
        • AWS
        • GCP
      • Technology
        • History
        • Threat Model
        • SME Concepts
          • Use Models
        • SEV-SNP Concepts
          • Features
            • Integrity Threats
            • Reverse Map Table
            • Page Validation
            • Page States
            • Virtual Machine Privilege Levels
            • Interrupt/Exception Protection
            • Trusted Platform Information
            • TCB Versioning
            • VM Launch & Attestation
            • VM Migration
            • Side Channels
          • Use Cases
          • Architecture
            • Encrypted Memory
            • Key Management
          • Software Implications
    • ARM CC
      • Technology
        • Introduction
        • Threat Model
        • Design
        • Comparison
    • Attestation Methods
      • Raw Attestation
      • Raw Attestation with Secure-Boot
      • Raw Attestation with a vTPM
        • AMD Secure VM Service Module and vTPMs
      • Raw Attestation with paravirtualized TPM
  • Resources
    • Youtube
    • Github
    • Products
Powered by GitBook
On this page

Was this helpful?

  1. Confidential Computing

How Confidential Computing works

Last updated 1 year ago

Was this helpful?

Confidential computing employs various techniques and technologies to ensure the security and privacy of sensitive data during processing. While the specific implementations may differ, the fundamental principles of confidential computing involve the following key components:

Memory Encryption: Confidential computing leverages hardware features to encrypt memory within secure enclaves. This ensures that data remains encrypted even while it's being processed, preventing unauthorized access to sensitive information.

Workload Attestation: Workload attestation verifies the integrity and identity of a workload running within an enclave. It allows external parties to verify that a particular workload is running securely within a trusted execution environment (TEE), ensuring the workload has not been compromised.

Confidential Boot: Confidential boot ensures the integrity and security of the system during the boot process. It involves establishing a secure chain of trust, verifying the authenticity and integrity of each component in the boot sequence, and protecting against tampering or malicious modifications.

Sealing/Binding: Sealing or binding refers to encrypting data and tying it to a specific enclave or platform. This ensures that the encrypted data can only be accessed by authorized enclaves or identities, providing confidentiality and protecting against unauthorized access.

Secret Provisioning: Provisioning ensures that the enclaves are correctly initialized with the required secrets to process data and workloads securely.