📃
Confidential Computing 101
HomeTechnologyTry CC!
  • Welcome
  • Confidential Computing
    • What is Confidential Computing
    • What problems Confidential Computing solves
      • Bare Metal
      • Docker
      • Kubernetes
      • Knative
    • Why Confidential Computing
    • How Confidential Computing works
      • Memory Encryption
      • Workload Attestation
      • Confidential Boot
      • Sealing / Binding
      • Secret Provisioning
    • Technology Overview
    • Cloud Service Providers
  • Technology in depth
    • Intel SGX
      • Getting Started
        • Bare Metal Server Installation
        • Enclave Development Environment
        • Intel SGX SDK Setup
      • Technology
        • 🎭Features
        • 💂Threat Model
        • 🆚Versions
        • 🟦Concepts
          • 🏦Memory Encryption
          • 👮Local and Remote Attestation
          • 🖼️DCAP-Attestation Framework
          • 🔑Secret Key Provisioning
      • enclaive Development Kit
        • 🏢Architecture
        • 🌪️Workflow
        • 🌍Tutorials
          • Azure DCdsv3, DCsv2, or DCsv3 Setup
          • Redis in cK8s
          • MongoDB in cK8s
          • K8s + HashiCorp Vault on Azure DCsv3
      • Vault Remote Attestation Plug-In
        • 🏃‍♂️Initialization
        • 👮Attestation
        • ⚙️Configuration
    • Intel TDX
      • Getting Started
        • Azure
        • AWS
        • GCP
      • Technology
        • History
          • VT
          • TME/MKTME
          • SGX
        • Features
        • Threat Model
        • Concepts
          • Architecture
            • TDX Module
          • Memory Encryption
            • Confidentiality and Integrity
            • Keys and Key Management
          • TD Partitioning
          • DCAP-Attestation
            • Overview
            • Platform Registration
            • Attestation Report
    • AMD SEV
      • Getting Started
        • Azure
        • AWS
        • GCP
      • Technology
        • History
        • Threat Model
        • SME Concepts
          • Use Models
        • SEV-SNP Concepts
          • Features
            • Integrity Threats
            • Reverse Map Table
            • Page Validation
            • Page States
            • Virtual Machine Privilege Levels
            • Interrupt/Exception Protection
            • Trusted Platform Information
            • TCB Versioning
            • VM Launch & Attestation
            • VM Migration
            • Side Channels
          • Use Cases
          • Architecture
            • Encrypted Memory
            • Key Management
          • Software Implications
    • ARM CC
      • Technology
        • Introduction
        • Threat Model
        • Design
        • Comparison
    • Attestation Methods
      • Raw Attestation
      • Raw Attestation with Secure-Boot
      • Raw Attestation with a vTPM
        • AMD Secure VM Service Module and vTPMs
      • Raw Attestation with paravirtualized TPM
  • Resources
    • Youtube
    • Github
    • Products
Powered by GitBook
On this page

Was this helpful?

  1. Technology in depth
  2. Intel SGX
  3. enclaive Development Kit

Workflow

Last updated 11 months ago

Was this helpful?

Attestation workflow

Once an enclave is launched, the AESM (Architectural Enclave Service Manager) facilitates the provision of the PCK (Provisioning Certification Key) Certificate to the Quoting Enclave. Within the LibOS-based environment, the application code executing inside can then initiate a request for a quote corresponding to its report. This report incorporates a hash of user-supplied data, enabling the inclusion of any desired information during the attestation process.

In the overall setup, everything apart from the application code is available within a base Docker container, which serves as a foundation for enclaving custom binaries. In most scenarios, particularly in the case of LibOS-based enclaving, the applications are unaware that they are operating within a Trusted Execution Environment and, therefore, do not provide their own attestations.

Rather than modifying each application to incorporate attestation handling, we provide a premain binary that executes prior to the workload itself. This approach enables the provisioning of secrets to applications within temporary storage located in enclave memory. As a result, the application configuration achieves transparency, allowing for simple usage of file paths to access these provisioned files.

🌪️