📃
Confidential Computing 101
HomeTechnologyTry CC!
  • Welcome
  • Confidential Computing
    • What is Confidential Computing
    • What problems Confidential Computing solves
      • Bare Metal
      • Docker
      • Kubernetes
      • Knative
    • Why Confidential Computing
    • How Confidential Computing works
      • Memory Encryption
      • Workload Attestation
      • Confidential Boot
      • Sealing / Binding
      • Secret Provisioning
    • Technology Overview
    • Cloud Service Providers
  • Technology in depth
    • Intel SGX
      • Getting Started
        • Bare Metal Server Installation
        • Enclave Development Environment
        • Intel SGX SDK Setup
      • Technology
        • 🎭Features
        • 💂Threat Model
        • 🆚Versions
        • 🟦Concepts
          • 🏦Memory Encryption
          • 👮Local and Remote Attestation
          • 🖼️DCAP-Attestation Framework
          • 🔑Secret Key Provisioning
      • enclaive Development Kit
        • 🏢Architecture
        • 🌪️Workflow
        • 🌍Tutorials
          • Azure DCdsv3, DCsv2, or DCsv3 Setup
          • Redis in cK8s
          • MongoDB in cK8s
          • K8s + HashiCorp Vault on Azure DCsv3
      • Vault Remote Attestation Plug-In
        • 🏃‍♂️Initialization
        • 👮Attestation
        • ⚙️Configuration
    • Intel TDX
      • Getting Started
        • Azure
        • AWS
        • GCP
      • Technology
        • History
          • VT
          • TME/MKTME
          • SGX
        • Features
        • Threat Model
        • Concepts
          • Architecture
            • TDX Module
          • Memory Encryption
            • Confidentiality and Integrity
            • Keys and Key Management
          • TD Partitioning
          • DCAP-Attestation
            • Overview
            • Platform Registration
            • Attestation Report
    • AMD SEV
      • Getting Started
        • Azure
        • AWS
        • GCP
      • Technology
        • History
        • Threat Model
        • SME Concepts
          • Use Models
        • SEV-SNP Concepts
          • Features
            • Integrity Threats
            • Reverse Map Table
            • Page Validation
            • Page States
            • Virtual Machine Privilege Levels
            • Interrupt/Exception Protection
            • Trusted Platform Information
            • TCB Versioning
            • VM Launch & Attestation
            • VM Migration
            • Side Channels
          • Use Cases
          • Architecture
            • Encrypted Memory
            • Key Management
          • Software Implications
    • ARM CC
      • Technology
        • Introduction
        • Threat Model
        • Design
        • Comparison
    • Attestation Methods
      • Raw Attestation
      • Raw Attestation with Secure-Boot
      • Raw Attestation with a vTPM
        • AMD Secure VM Service Module and vTPMs
      • Raw Attestation with paravirtualized TPM
  • Resources
    • Youtube
    • Github
    • Products
Powered by GitBook
On this page

Was this helpful?

  1. Technology in depth

ARM CC

The Armv9 architecture is poised to introduce a novel secure execution environment known as Realms. Realms requires only minimal adjustments to the hardware and heavily relies on firmware for its functionalities. This design allows existing applications to continue functioning without modification, while benefiting from heightened security.

Within this section, we delve into the inner workings of Realms. We explore how the correctness of the firmware was established through the application of the Coq proof assistant. Additionally, we present performance benchmarks that compare the efficiency of Realms and outline key distinctions between Realms and established secure enclaves.

Last updated 11 months ago

Was this helpful?